大数据可视化分析有哪四个步骤


大数据可视化其主要目的是借助图形手段,清晰、有效地进行传达与沟通信息,其中,数据的可视化表示被定义为一种以某种形式提取的信息,包括相应信息单元的各种属性和变量。

数据可视化起源于图形学、 计算机图形学 、人工智能、科学可视化以及用户界面等领域的相互促进和发展,是当前计算机科学的一个重要研究方向,它利用计算机对抽象信息进行直观的表示,以利于快速检索信息和增强认知能力。

数据可视化到底能干什么呢?数据可视化系统并不是为了展示用户的已知的数据之间的规律,而是为了帮助用户通过认知数据,有新的发现,发现这些数据所反映的实质。

大数据可视化,需求分析,数据仓库/数据集市

从技术上来说,大数据可视化的实施步骤主要有四项:需求分析,建设数据仓库/数据集市模型,数据抽取、清洗、转换、加载( ETL ),建立可视化分析场景。

一、需求分析

需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可能查看的角度、需要发泄企业各方面的规律、用户的需求等内容。

二、建设数据仓库/数据集市的模型

数据仓库/数据集市的模型是在需求分析的基础上建立起来的。数据仓库/数据集市建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。维度建模的关键在于明确下面四个问题:

1.哪些维度对主题分析有用?

2.如何使用现有数据生成维表?

3.用什么指标来”度量”主题?

4.如何使用现有数据生成事实表?

大数据可视化,需求分析,数据仓库/数据集市

三、数据抽取、清洗、转换、加载(ETL)

数据抽取是指将数据仓库/集市需要的数据从各个业务系统中抽离出来,因为每个业务系统的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽取流程都需要使用接口将元数据传送到清洗和转换阶段。

数据清洗的目的是保证抽取的原数据的质量符合数据仓库/集市的要求并保持数据的一致性。

数据转换是整个ETL过程的核心部分,主要是对原数据进行计算和放大。数据加载是按照数据仓库/集市模型中各个实体之间的关系将数据加载到目标表中。

四、建立可视化场景

建立可视化场景是对数据仓库/集市中的数据进行分析处理的成果,用户能够借此从多个角度查看企业/单位的运营状况,按照不同的主题和方式探查企业/单位业务内容的核心数据,从而作出更精准的预测和判断。

大数据可视化,需求分析,数据仓库/数据集市

大数据可视化步骤我们从技术方面讲我们总结了以上四个步骤,随着社会的发展,大数据可视化新的工具和图表类型也不断出现,每种都试图创造出比之前更有吸引力、更有利于传播信息的图表,所以,可视化项目应该自己去亲自感受总结方法,以及享受过程步骤,这样才能更加易懂。